
Note: Hi there! This isn't a purpose-built writeup; it's just the docs I wrote for this algorithm.
It's better than nothing, and explains it all very thoroughly. Perhaps I'll do a better writeup in
the future, but this will do for now.

global trajectory optimization docs
There are two global opt algorithms in the MPC folder, plus the grad student’s code. I haven’t
fully looked through the grad student’s code, and it's reliably slower, so I’m only going to write
about the algorithms I wrote. Also, since the first one was bad and the second iteration is better
in every possible way, I’ll only write about that one.

to reiterate, this covers:

global_opt_compiled.py (branch: reid-mpc)
This is the most up-to-date version, and currently the best.

notes
ever since I added the ability for friction and drive acceleration limits to be functions, runtime
has increased significantly when using IPOPT. It’s still very fast when using WORHP, but I know
that’s a pain in the ass to obtain and install. sorry. Just know that the performance is better than
what you’re seeing.

API
Here’s how to use it. See here for how it works.

constructor
After importing, create a new global opt object:

where N is the number of points to expect in the discretized path.

You can also pass some other options. Here’s the full constructor:

g = GlobalOptCompiled(N)

GlobalOptCompiled(N,
 nlp_solver='ipopt', # solver library. use 'worhp' if you can
 solver_opts=None, # options for solver (defaults are good)

FRIC_MAX and ACC_MAX should be of type casadi.Function with the signature (i0)->(o0) (ie,
one input and one output). They are functions of velocity, in m/s. FRIC_MAX can also be passed
as a float, corresponding simply to a constant function.

code generation
To compile a solver, use this method:

If generate_c is true, it will generate new C code for the solver, overwriting the previous code.

If compile_c is true, it will compile the (new or old) C code for the solver and move the binary to
the MPC/bin/ directory.

If use_c is true, it will import the (new or old) binary from MPC/bin/ and use that as the solver.
Otherwise it will just use the original expression graph evaluated in CasADi’s virtual machines.

gcc_opt_flag sets the optimization level used by GCC. The default, -Ofast , is maximum
optimization, but this can take a long time to compile (on the order of minutes) and also
sometimes fails with weird cryptic C stuff about symbols not being found. If that happens, you
can take it one tick down, using -O3 , which doesn’t sacrifice much performance and fixes the

 car_params={
 'l_r': 1.4987, # length from CG to front axle (m)
 'l_f': 1.5213, # length from CG to back axle (m)
 'm' : 1.0 # mass (1.0 => force=acc; don't change)
 },
 DF_MIN = - 0.5, # min steering angle
 DF_MAX = 0.5, # max steering angle
 ACC_MIN = - 3.0, # max braking acceleration (negative)
 ACC_MAX = 2.0, # max forward acceleration
 ACC_MAX_FN = ACC_MAX # also limit fwd acc < ACC_MAX_FN(velocity)
 DF_DOT_MIN = - 0.5, # max steering derivative (left) (rad/s)
 DF_DOT_MAX = 0.5, # max steering derivative (right) (rad/s)
 V_MIN = 0.0, # minimum forward velocity
 V_MAX = 25.0, # maximum forward velocity
 FRIC_MAX = 12.0) # maximum acceleration (based on tire grip)

g.construct_solver(
generate_c=False,
compile_c=False,
use_c=False,
gcc_opt_flag='-Ofast'

):

issue. If you’re debugging and just need faster compile times, set it to -O2 or -O1 or even just
an empty string for the fastest possible compile time.

If you already have a compiled solver and don’t want to compile or construct one from scratch,
you can just call the g.load_solver() method. This doesn’t go through the effort of setting up
the whole expression graph, so it’s faster.

Make sure the N of the compiled solver and the N you passed to the constructor are the same!

solving the problem
To run the solver, use g.solve :

where left and right are the left and right sides of the track. They should be of shape (N,
2) , where N is the same as the one you passed in to the constructor. These points determine
the discretization of the track - the optimizer simply linearly interpolates between corresponding
pairs of points. Choosing these points given a path of cones is a good deal of effort; use the
PairPath class in MPC/custom_opt/pairpath.py .

this will return a dictionary with three items:

fixing the data
data with inconsistent timesteps is really quite difficult to deal with, so we need to fix that. Use
the g.to_constant_tgrid method:

(enter whatever timestep you like for dt)

This returns two numpy arrays, here states and controls . states has shape (M, 4) , and
controls has shape (M, 2) . These states and controls represent a real, feasible (to within the
error of the integrator) path with even time steps of dt seconds.

g.solve(left, right)

z is the full state of the car. It has shape (N, 4) , and its format is z = [].x y ψ v

u is the control inputs. It has shape (N, 2) , and its format is u = [].a ϕ

t is the timestamps corresponding to each element of z and u . It will always be an
increasing series, but it is not evenly spaced.

res = g.solve(left, right)
states, controls = g.to_constant_tgrid(dt=0.1, **res)

How it works
We’re given the track in pairs of points defining the boundaries. We use this to create a
parameterized path through the track in (x, y) coordinates, then add the rest of the state and
controls at each point. The time between points - Δt - is also a variable.

Here’s an illustration:

we’re given L2×n = [] and R2×n = []. We set up the optimization
problem:

Now let’s define all those variables and functions!

Let our x to be all of our variables together (please excuse this abuse of notation):

x = .flatten()

and our cost function to simply be the lap time:

l1 l2 … ln r1 r2 … rn

min
x

f(x) subject to {
gi(x) = 0 i ∈ {1, … , p}

lbi ≤ hi(x) ≤ ubi i ∈ {1, … , q}

⎡⎢⎣| | | | | |

t ψ v a u Δt

| | | | | |

⎤⎥⎦

f(x) =
n

∑
i=1

Δt

Now we have to make our constraint functions. First, we’ll introduce the vehicle dynamics. Let
F(z(t0), u(t0), Δt) = z(t0 + Δt) represent a function which integrates the dynamics. Then the
constraints are:

gi(x) = F(zi, ui, Δti) − zi+1

where z = [] and u = [].

This function F is implemented using the midpoint method in discrete_custom_integrator from
MPC/sim/sim.py .

Now we also want to add constraints based on the car’s limits:

x y ψ v a ϕ

The car can only accelerate so fast, and that acceleration depends on the current motor
speed.

ai < f(v) for some function f determined empirically using data from dynamics:

The car can only brake so hard.
The steering angle is mechanically limited
the steering wheel can only be turned so fast
the tire friction is limited, so centripetal and driving acceleration must not exceed friction
limits. These friction limits depend on velocity, since aero increases downforce.

These are all implemented fairly simply, using direct constraints on the input variables. The last
one is a bit silly:

centripetal acceleration is given by: v2

r = v2

v

ϕ̇

=
v2ϕ̇

v = vϕ̇. v is an optimization variable that we

use directly, but ϕ̇ is nontrivial to compute. It is a function of steering angle and velocity. We can
take it directly from the dynamics:

which is where the expression for centripetal acceleration comes from:

then, we can combine centripetal and forward acceleration with the Pythagorean theorem, since
we know they’re orthogonal. This net acceleration can then be constrained to be less than

this is an example plot from the OpenLapSim documentation. We need to gather true data
from dynanics.

given state z = and control vector u = []

then dynamics are given by:

ż = = where β = tan−1 (lr tan ϕ

lf + lr

)

⎡⎢⎣x

y

ψ

v

⎤⎥⎦ a

ϕ

⎡⎢⎣ẋ

ẏ

ψ̇

v̇

⎤⎥⎦ ⎡⎢⎣v cos(ψ + β)

v sin(ψ + β)
v
lr

sin β

a

⎤⎥⎦ac = (self.v**2 / self.car_params['l_r']) *
sin(arctan(self.car_params['l_r']/(self.car_params['l_f'] + self.car_params['l_r'])
* tan(self.u[:, 1])))

some function of velocity.

implementation
it’s all implemented using the base casadi.nlpsol class. This is used rather than the Opti stack
because it’s more fully featured, we get more control, and most importantly, it has far better
support for code generation, which will significantly reduce init and solve times.

